Supplementary Note for "Asymmetric All-Pay Contests with Heterogeneous Prizes"

Jun Xiao*

November 24, 2015

Abstract

This note contains the results in linear algebra that are important to "Asymmetric All-Pay Contests with Heterogeneous Prizes". There are two main results, Lemma 11 and 14, which are used to prove Propositions 4 and 5 in the paper.

We follow the same notations as in "Asymmetric All-Pay Contests with Heterogeneous Prizes", which is referred as to the "main paper" hereafter.

Define $\mathbf{D}_j \equiv \mathbf{1}_j \mathbf{1}'_j - \mathbf{I}_j$, where $\mathbf{1}_j$ is a *j*-dimensional vector of ones. The diagonal entries of \mathbf{D}_j are zeros, and all the other entries are 1. \mathbf{B}_j is \mathbf{D}_j with the entry at position (1, 1) replaced with 1.

Lemma 1 det $\mathbf{D}_{j} = (j-1) (-1)^{j-1}$.

Proof. We use induction in this proof. When j = 3, it is easy to see that

$$\det \mathbf{D}_{j} = (j-1) (-1)^{j-1}$$
(1)

$$\det \mathbf{B}_{i} = (-1)^{j-1} \tag{2}$$

Suppose the two equations above are true for j - 1. Expand det \mathbf{D}_j according the first column, we get a sum of j - 1 terms of alternating signs. For the j_1 th term, put its j_1 th column to left and move columns 1 to $j_1 - 1$ one position to the right. Then, each term is $-\det \mathbf{B}_{j-1}$, and we have

$$\det \mathbf{D}_{j} = -(j-1) \det \mathbf{B}_{j-1} \tag{3}$$

Expand det \mathbf{B}_j according to the first column, we get a sum of j terms of alternating signs. For the $(j_1 + 1)$ th term and $1 \leq j_1 \leq j - 1$, put its j_1 th column to left and move columns 1 to $j_1 - 1$ one position to the right. Then, each of the last j - 1 term is $-\det \mathbf{B}_{j-1}$, so

$$\det \mathbf{B}_{j} = \det \mathbf{D}_{j-1} - (j-1) \det \mathbf{B}_{j-1}$$
$$= \det \mathbf{D}_{j-1} - \det \mathbf{D}_{j}$$
(4)

^{*}Department of Economics, The University of Melbourne. E-mail: jun.xiao@unimelb.edu.au.

where the second equality comes from (3). Therefore, (3) and (4) imply (1) and (2) are also true for j.

If a non-zero entry of \mathbf{D}_j is replace with 0, then we say that the resulting matrix has an off-diagonal zero at position (j_1, j_2) .

Denote \mathcal{M}_j as the set of all $j \times j$ matrices such that i) it has at most j off-diagonal zeros, ii) each column has at most one off-diagonal zero.

Lemma 2 If i) $\mathbf{A}_j \in \mathcal{M}_j$, ii) it has j off-diagonal zeros and iii) each row has an off-diagonal zero, det \mathbf{A}_j is 0 or has sign $(-1)^{j-1}$.

Proof. Suppose the off-diagonal zero in row 1 is at column j_2 , where $j_2 \neq 1$. Add all other rows to row 1 and divide it by j - 2, then we get a row of ones. It easy to see that column j_2 does not have an off-diagonal zero. Suppose the off-diagonal zero in row j_2 is at column j_3 .

Deduct column j_2 from column j_3 , then column j_3 becomes zeros except -1 in row j_3 .

Expand the determinant according to column j_3 , we get $-\det \mathbf{A}_{j-1}^1$ where \mathbf{A}_{j-1}^1 is a $(j-1) \times (j-1)$ matrix with ones in the first row¹. Moreover, two column of \mathbf{A}_{j-1}^1 has no off-diagonal zeros and any other column has one off-diagonal zero. Suppose the two columns without off-diagonal zeros are column j'_1 and j'_2 .

Multiply row 1 by j-3 and deduct all others rows from it, then the first row has two off-diagonal zeros at column j'_1 and j'_2 . Hence the resulting matrix is in \mathcal{M}_{j-1} , so its determinant is either 0 or of the sign $(-1)^{j-2}$. As a result, $-\det \mathbf{A}^1_{j-1}$ is 0 or has sign $(-1)^{j-1}$.

Lemma 3 If i) $\mathbf{A}_j \in \mathcal{M}_j$, ii) it has j off-diagonal zeros, iii) at least one row has no off-diagonal zero, det \mathbf{A}_j is 0 or has the sign $(-1)^{j-1}$.

Proof. Denote the row without an off-diagonal zero as row j_1 . Suppose row j_2 is a row with an off-diagonal zero. Add all the other rows to row j_2 , then divide it by j - 1, then row j_2 only has ones.

Deduct row j_1 from row j_2 , we get a row of zeros except 1 at column j_1 .

Expand the determinant according to row j_2 , we have $(-1)^{j_1+j_2} \det \mathbf{A}_{j-1}^1$ where \mathbf{A}_{j-1}^1 is the (j_2, j_1) minor matrix of \mathbf{A}_j .

It is easy to see that $j_1 \neq j_2$. Suppose $j_1 > j_2$. Move column j_2 of \mathbf{A}_{j-1} to the left and shift the column 1 to $j_2 - 1$ to the right by one position. We have $(-1)^{j_1+j_2} (-1)^{j_2-1} \det \mathbf{A}_{j-1}^2$. Move row $j_1 - 1$ to the top and shift all the rows above row $j_1 - 1$ down by one position, we have $(-1)^{j_1+j_2} (-1)^{j_2-1} (-1)^{j_1-2} \det \mathbf{A}_{j-1}^3 = -\det \mathbf{A}_{j-1}^3$. The first row of \mathbf{A}_{j-1}^3 only has ones, and each column has at most one off-diagonal zero. If $j_1 < j_2$, we get the same result similarly.

Multiply row 1 of \mathbf{A}_{j-1}^3 by j-3 and deduct all the other rows from it, the resulting matrix has one off-diagonal zero in each column. Therefore, this matrix is in \mathcal{M}_{j-1} , and has a determinant that is either 0 or of the sign $(-1)^{j-2}$. Since det \mathbf{A}_j has the opposite sign of the determinant of the resulting matrix, det \mathbf{A}_j is 0 or has the sign $(-1)^{j-1}$.

¹The rest of the notes use elementary operation of matrix, and we use supscripts to index the matrices in a sequence of such operations.

Off-Diagonal Condition: Column j_1 has an off-diagonal zero if there is a column with an offdiagonal zero in row j_1 .

Lemma 4 If i) $\mathbf{A}_j \in \mathcal{M}_j$, ii) it has less than j off-diagonal zeros, iii) it does not satisfy the off-diagonal condition, det \mathbf{A}_j is 0 or has the sign $(-1)^{j-1}$.

Proof. Since A_j does not satisfy the off-diagonal condition, there is a column, j_2 , such that i) column j_2 has an off-diagonal zero in row j_1 , ii) column j_1 has no off-diagonal zero.

Deduct column j_2 from column j_1 , and and then column j_1 becomes zeros except a 1 in row j_2 .

The following analysis is similar to Lemma 2. Expand the determinant according to column j_1 , and then we have $(-1)^{j_1+j_2} \det \mathbf{A}_{j-1}^1$, where \mathbf{A}_{j-1}^1 is the (j_2, j_1) minor matrix of \mathbf{A}_j . Recall that $j_2 \neq j_1$, so first consider $j_2 < j_1$. Move row $j_1 - 1$ to the top and column $j_2 - 1$ to the right. The determinant becomes $-\det \mathbf{A}_{j-1}^2$. Note that the entry at (1,1) in \mathbf{A}_{j-1}^2 is the entry at (j_1, j_2) in \mathbf{A}_j , which is 0 by assumption. Therefore, $\mathbf{A}_{j-1}^2 \in \mathcal{A}_{j-1}$, so det \mathbf{A}_j is either 0 or of the sign $(-1)^{j-1}$. If $j_1 > j_2$, we can get the same result similarly.

Lemma 5 If i) $\mathbf{A}_j \in \mathcal{M}_j$, ii) it has less than j off-diagonal zeros, iii) it satisfies the off-diagonal condition, det \mathbf{A}_j is 0 or has the sign $(-1)^{j-1}$.

Proof. First, we claim that column j_1 has an off-diagonal zero if row j_1 has an off-diagonal zero. To see why, suppose otherwise. Then, row j_1 has an off-diagonal zero at column j_2 and column j_1 does not. Column j has an off-diagonal zero in row j_1 , and column j_1 has no off-diagonal zero, which contradicts the off-diagonal condition.

As a result, if column j_1 has no off-diagonal zero, row j_1 has no off-diagonal zero. Denote \mathcal{J} as $\{1, 2, ..., j\}$ and \mathcal{H} as the columns with an off-diagonal zero, then $\mathcal{J} \setminus \mathcal{H}$ is a set of rows without off-diagonal zeros.²

Pick any row with an off-diagonal zero and add all the other rows with off-diagonal zeros to it. The resulting row is either \hat{j} or $\hat{j} - 1$, where \hat{j} is the number of rows with off-diagonal zeros. Moreover, in this row, $\hat{j} - 1$ is at the columns in \mathcal{H} and \hat{j} is at the columns in $\mathcal{J} \setminus \mathcal{H}$.

Pick a row in $\mathcal{J} \setminus \mathcal{H}$ and add the rest to this row, the resulting row has entries equal \bar{j} or $\bar{j}-1$, where $\bar{j} = |\mathcal{J} \setminus \mathcal{H}|$. Moreover, \bar{j} is in the columns in \mathcal{H} , and $\bar{j}-1$ is in the columns in $\mathcal{J} \setminus \mathcal{H}$.

Add the row with \hat{j} and $\hat{j}-1$ to the one with \bar{j} and $\bar{j}-1$, and divide it by $\bar{j}+\hat{j}-1$. The resulting row has only ones.

This row of ones replaces a row with one off-diagonal zero. Deduct a row without an off-diagonal zero from this row of ones, then we get a row of zeros except one entry as 1. Similar to Lemmas 3 and 4, if we expand the determinant according to this row and move some rows and columns, det \mathbf{A}_j becomes $-\det \mathbf{A}_{j-1}$, where $\mathbf{A}_{j-1} \in \mathcal{M}_{j-1}$. Hence, det \mathbf{A}_j is 0 or has the sign $(-1)^{j-1}$.

Lemma 6 If $\mathbf{A}_j \in \mathcal{M}_j$, det $\mathbf{A}_j = 0$ or det \mathbf{A} has the sign $(-1)^{j-1}$.

Proof. By induction.

It is easy to verify that the statement is true for j' = 2. Suppose the statement is true for j' = j - 1, Lemma 2 to 5 show that it is also true for j' = j. Therefore the Lemma is true if integer j is bigger than 1.

²There might be more than one such set.

Lemma 7 det \mathbf{H}_j has sign $(-1)^{j-1}$, where \mathbf{H}_j is a $j \times j$ matrix with zero diagonal entries and $h_{j_1,j_2} = \sum_{l=1}^{j} h_l - h_{j_1} - h_{j_2}$, where $h_l > 0$ for any l.

Proof. Column 1 of \mathbf{H}_j is a sum of j-1 vectors, $\sum_{l=2}^{j} h_l \mathbf{1}_{-1,-l}$, where $\mathbf{1}_{-j_1,-j_2}$ is a column vector

with ones except two zeros in row j_1 and j_2 . Therefore, det $\mathbf{H}_j = \sum_{l=2}^{j} \det \mathbf{H}_j^1$, where \mathbf{H}_j^1 is a $j \times j$ matrix with column 1 as $h_l \mathbf{1}_{-1,-l}$ and the other columns the same as in \mathbf{H}_j . Note that column 1 in \mathbf{H}_l^1 only contains 0 or h_l .

For any \mathbf{H}_{l}^{1} , its second column is $\sum_{l=1,3,...,j} h_{l} \mathbf{1}_{-2,-l}$, so det \mathbf{H}_{l}^{1} also equals a sum of j-1 determinants of $j \times j$ matrices. Moreover, the first two columns of these matrices only have one h_{l} .

Repeat this step for the other columns until det \mathbf{H}_j become a sum of determinants of $j \times j$ matrices that have zero or the same h_l in each column. Moreover, these determinants have other properties. First, if column j_2 of these matrices has only h_l , then it is $h_l \mathbf{1}_{-l,-j_2}$. Second, column j_2 cannot have h_{j_2} .

Denote $\mathcal{J} = \{1, ..., j\}$ and

$$\mathfrak{K}_{j} = \left\{ (\mathcal{J}_{1}, \mathcal{J}_{2}, ..., \mathcal{J}_{j}) \mid \mathcal{J}_{l} \cap \mathcal{J}_{l'} = \emptyset, \ \cup_{l=1}^{j} \mathcal{J}_{l} = \mathcal{J}, \text{ and } |\mathcal{J}_{l}| < j \right\}$$

 $(\mathcal{J}_1, \mathcal{J}_2, ..., \mathcal{J}_j)$ is a *j*-set partition of \mathcal{J} except that \mathcal{J}_l can be empty. For any $(\mathcal{J}_1, ..., \mathcal{J}_j) \in \mathfrak{K}_j$, replace the entry of (j_1, j_2) in \mathbf{D}_j with 0 if $j_2 \in \mathcal{J}_{j_1}$, and denote the resulting matrix as $\mathbf{A}_{\mathcal{J}_1,...,\mathcal{J}_j}$. det \mathbf{H}_j is a polynomial of order j, and each term has the same order. That is

$$\det \mathbf{H}_{j} = \sum_{\left(\gamma_{1}, \dots, \gamma_{j}\right)} \left(\eta_{\gamma_{1}, \dots, \gamma_{j}} \prod_{l=1}^{j} h_{l}^{\gamma_{l}} \right)$$

where the sum is over the set $\left\{ \left(\gamma_1, ..., \gamma_j\right) \mid \gamma_l < j, \sum_{l=1}^j \gamma_l = j \text{ and } \gamma_l \in \mathbb{Z}_+ \right\}$. Denote $\Re_{\gamma_1, ..., \gamma_j} = \left\{ \left(\mathcal{J}_1, \mathcal{J}_2, ..., \mathcal{J}_j\right) \in \Re_j \text{ such that } |\mathcal{J}_l| = \gamma_l \right\}$. Then, $\eta_{\gamma_1, ..., \gamma_j} = \sum_{(\mathcal{J}_1, ..., \mathcal{J}_j)} \det \mathbf{A}_{\mathcal{J}_1, ..., \mathcal{J}_j}$, where the sum

is over the set $\Re_{\gamma_1,\ldots,\gamma_j}.$

For each $(\mathcal{J}_1, ..., \mathcal{J}_j)$ in $\mathfrak{K}_{\gamma_1, ..., \gamma_j}$, $\mathbf{A}_{\mathcal{J}_1, ..., \mathcal{J}_j}$ is in \mathcal{A}_j , so $\eta_{\gamma_1, ..., \gamma_j}$ is either 0 or has sign $(-1)^{j-1}$ by Lemma 6. As a result, det \mathbf{H}_j either is 0 or has sign $(-1)^{j-1}$. Now we are going to show det $\mathbf{H}_j \neq 0$ by proving that one of the coefficients is not zero.

Consider the coefficient of $h_1^{j-2}h_2h_3$ in det \mathbf{H}_j , it is a sum of determinants and one of them is associated with $(\mathcal{J}_1, ..., \mathcal{J}_j)$ such that $\mathcal{J}_2 = \{3\}, \mathcal{J}_3 = \{1\}$ and $\mathcal{J}_1 = \mathcal{J} \setminus (\mathcal{J}_2 \cup \mathcal{J}_3)$. Such determinant has j off-diagonal zeros: one at column 3 to row 2, another at column 1 row 3 and all the others are in the first row. The resulting matrix has zeros in the first row except a 1 in column 3. Expand this determinant according to the first row, we get a $(j-1) \times (j-1)$ determinant. Switch the first two row and we get $-\det \mathbf{D}_{j-1}$ which is not zero. **Lemma 8** det $\hat{\mathbf{H}}_j$ has sign $(-1)^{j-1}$, where $\hat{\mathbf{H}}_j$ is a $j \times j$ matrix with zeros diagonal entries and $\hat{h}_{j_1,j_2} = \sum_{l=1}^{j'} h_l - h_{j_1} - h_{j_2}$, where $h_l > 0$ for any l and $j' \ge j$.

Proof. Add $\sum_{l=j}^{j'} h_l$ to the entries off the diagonal of \mathbf{H}_j , we have $\hat{\mathbf{H}}_j$. Denote $h'_l = h_l + \frac{1}{j-2} \sum_{l=j}^{j'} h_l > 0$, then $\hat{h}_{j_1,j_2} = \sum_{l=1}^{j} h'_l - h'_{j_1} - h'_{j_2}$ and the previous lemma implies that det $\hat{\mathbf{H}}_j$ has sign $(-1)^{j-1}$.

Let us introduce some notations before we move to the next lemma. Suppose the active and participating players remain the same for a given interval. Let \mathcal{A} be the active players and \mathcal{P} be the participating players, and $\mathcal{A} \subset \mathcal{P}$. Then, for any *s* in this interval, equilibrium strategies $(G_i)_{i \in \mathcal{A}}$ solve

$$W(\mathbf{G}_{-i}(s), \mathbf{v}) - C_i(s) = u_i \qquad \text{for } i \in \mathcal{A}$$
(5)

where $\mathbf{G}_{-i}(s) = (G_i(s))_{i \in \mathcal{P} \setminus \{i\}}$ and $\mathbf{v} = (v^k)_{k \in \mathcal{P}}$.³ Note that if we omit the superscripts in (35) of the main paper, the equation is the same as (5).

Proposition 1 implies that \mathcal{A} and \mathcal{P} contain consecutive players, that is, $i \in \mathcal{A}$ if i - 1 and $i + 1 \in \mathcal{A}$. For simpler notation, suppose $\mathcal{A} = \mathcal{P} = \{1, 2, ..., j'\}$. If the strongest player in \mathcal{P} is not 1, or if $\mathcal{A} \subsetneq \mathcal{P}$, the analysis is the same.

For any $i' \in \mathcal{A} \setminus \{i\}$, take derivatives of both sides of (5) with respect to $G_{i'}$, we have

$$\sum_{l \in \mathcal{A} \setminus \{i, i'\}} \frac{\partial W \left(\mathbf{G}_{-i}(s), \mathbf{v} \right)}{\partial G_l(s)} \frac{\partial G_l(s)}{\partial G_{i'}(s)} = -\frac{\partial W \left(\mathbf{G}_{-i}(s), \mathbf{v} \right)}{\partial G_{i'}(s)} \quad \text{for } i \neq i'$$
(6)

$$\sum_{l \in \mathcal{A} \setminus \{i'\}} \frac{\partial W \left(\mathbf{G}_{-i'}(s), \mathbf{v} \right)}{\partial G_l(s)} \frac{\partial G_l(s)}{\partial G_{i'}(s)} = 0 \tag{7}$$

We can write (6) and (7) into matrix form

$$\hat{\mathbf{J}}_{j-1}\boldsymbol{\delta} = -\mathbf{d}$$

$$\mathbf{d}'\boldsymbol{\delta} = \mathbf{0}$$

$$(8)$$

where $j = |\mathcal{A}|$ and $\hat{\mathbf{J}}_{j-1}$ is a $(j-1) \times (j-1)$ matrix, $\boldsymbol{\delta}$ and \mathbf{d} are vectors of j-1 rows. The diagonal entries of $\hat{\mathbf{J}}$ are zero and the entry at (j_1, j_2) is $\partial W(\mathbf{G}_{-j_1}(s), \mathbf{v}) / \partial G_{j_2}(s)$; the element in row j_1 of $\boldsymbol{\delta}$ is $\partial G_{j_1}(s) / \partial G_{i'}(s)$ for $j_1 \neq i'$; the element in row j_1 of \mathbf{d} is $\partial W(\mathbf{G}_{-j_1}(s), \mathbf{v}) / \partial G_{i'}(s)$ for $j_1 \neq i'$. Define $\mathbf{J}_j = \begin{pmatrix} \hat{\mathbf{J}}_{j-1} & \mathbf{d} \\ \mathbf{d}' & 0 \end{pmatrix}$ and w_{j_1,j_2} as the entry in row j_1 and column j_2 of \mathbf{J}_j .

Define first order difference as $\Delta_k^{(1)} = v^{k-1} - v^k$, for k = 2, ..., j'. The *l*th order difference is $\Delta_k^{(l)} = \Delta_{k-1}^{(l-1)} - \Delta_k^{(l-1)}$ for l = 1, ..., j' - 1, and k = l + 1, ..., j'.

³Since the indices of **G** and **v** in $W(\mathbf{G}_{-i}, \mathbf{v})$ are the same below, we sometime only mention the indices for **G**.

Lemma 9

$$w_{j_1,j_2} = \Delta_j^{(1)} + \sum_{l'=2}^{j'-1} \Delta_{j'}^{(l')} \left(\sum_{\{i_1,\dots,i_{l'-1}\} \subset \Gamma_{j_1,j_2}} \left(\prod_{l=1}^{l'-1} G_{i_l} \right) \right)$$

where $j_1 \neq j_2$ and $\Gamma_{j_1,j_2} = \{1, 2, ..., j'\} \setminus \{j_1, j_2\}.$

Proof. We are going to prove by induction. First, it is easy to verify the statement is true for j' = 3. Suppose the statement is true for $j' = j'_I - 1$, we are going to show that it is also true for $j' = j'_I$.

For the purpose of cleaner exhibition, the following proof only focuses on w_{12} . We know that

$$\begin{split} w_{12} &= W\left(G_{3}, ..., G_{j_{I}'}, \Delta_{2}^{(1)}, ..., \Delta_{j_{I}'}^{(1)}\right) \\ &= G_{j_{I}'}W\left(G_{3}, ..., G_{j_{I}'-1}, \Delta_{2}^{(1)}, ..., \Delta_{j_{I}'-1}^{(1)}\right) + \left(1 - G_{j_{I}'}\right) W\left(G_{3}, ..., G_{j_{I}'-1}, \Delta_{3}^{(1)}, ..., \Delta_{j_{I}'}^{(1)}\right) \\ &= W\left(G_{3}, ..., G_{j_{I}'-1}, \Delta_{3}^{(1)}, ..., \Delta_{j_{I}'}^{(1)}\right) \\ &+ G_{j_{I}'}\left(W\left(G_{3}, ..., G_{j_{I}'-1}, \Delta_{2}^{(1)}, ..., \Delta_{j_{I}'-1}^{(1)}\right) - W\left(G_{3}, ..., G_{j_{I}'-1}, \Delta_{3}^{(1)}, ..., \Delta_{j_{I}'}^{(1)}\right)\right) \\ &= W\left(G_{3}, ..., G_{j_{I}'-1}, \Delta_{3}^{(1)}, ..., \Delta_{j_{I}'}^{(1)}\right) \\ &+ G_{j_{I}'}W\left(G_{3}, ..., G_{j_{I}'-1}, \Delta_{2}^{(1)} - \Delta_{3}^{(1)}, \Delta_{3}^{(1)} - \Delta_{4}^{(1)}, ..., \Delta_{j_{I}'-1}^{(1)} - \Delta_{j_{I}'}^{(1)}\right) \\ &= W\left(G_{3}, ..., G_{j_{I}'-1}, \Delta_{2}^{(1)} - \Delta_{3}^{(1)}, \Delta_{3}^{(1)} - \Delta_{4}^{(1)}, ..., \Delta_{j_{I}'-1}^{(1)} - \Delta_{j_{I}'}^{(1)}\right) \\ &= W\left(G_{3}, ..., G_{k_{I}'-1}, \Delta_{3}^{(1)}, ..., \Delta_{k_{I}'}^{(1)}\right) + G_{k_{I}'}W\left(G_{3}, ..., G_{k_{I}'-1}, \Delta_{3}^{(2)}, ..., \Delta_{k_{I}'}^{(2)}\right) \end{aligned}$$
(9)

Since the statement is true for $k' = j'_I - 1$, we have

$$W(G_3, ..., G_{j'_l-1}, \Delta_3^{(1)}, ..., \Delta_{j'_l}^{(1)}) = \Delta_{j'_l}^{(1)} + \sum_{l'=2}^{j'_l-2} \Delta_{j'_l}^{(l')} \left(\sum_{\{i_1, ..., i_{l'-1}\} \subset \Gamma_{12}'} \left(\prod_{l=1}^{l'-1} G_{i_l} \right) \right)$$
(10)

$$W(G_3, ..., G_{j'_I-1}, \Delta_3^{(2)}, ..., \Delta_{j'_I}^{(2)}) = \Delta_{j'_I}^{(2)} + \sum_{l'=2}^{j'_I-2} \Delta_{j'_I}^{(l'+1)} \left(\sum_{\{i_1, ..., i_{l'-1}\} \subset \Gamma_{12}'} \left(\prod_{l=1}^{l'-1} G_{i_l} \right) \right)$$
(11)

where $\Gamma'_{12} = \{1, 2, ..., j'_I - 1\} \setminus \{1, 2\}.$

Substitute (10) and (11) into (9), then we have

$$w_{12} = \Delta_{j'_{I}}^{(1)} + \sum_{l'=2}^{j'_{I}-2} \Delta_{j'_{I}}^{(l')} \left(\sum_{\{i_{1},\dots,i_{l'-1}\}\subset\Gamma'_{12}} \left(\prod_{l=1}^{l'-1} G_{i_{l}}\right) \right) + G_{j'_{I}} \left(\Delta_{j'_{I}}^{(2)} + \sum_{l'=2}^{j'_{I}-2} \Delta_{j'_{I}}^{(l'+1)} \left(\sum_{\{i_{1},\dots,i_{l'-1}\}\subset\Gamma'_{12}} \left(\prod_{l=1}^{l'-1} G_{i_{l}}\right) \right) \right)$$

therefore the coefficient of $\Delta_{j'_I}^{(j')}$ is

$$\begin{pmatrix} \sum_{\{i_1,\dots,i_{l'-1}\}\subset\Gamma'_{12}} \left(\prod_{l=1}^{l'-1} G_{i_l}\right) \end{pmatrix} + G_{j'_I} \left(\sum_{\{i_1,\dots,i_{l'-2}\}\subset\Gamma'_{12}} \left(\prod_{l=1}^{l'-2} G_{i_l}\right) \right) \\ = \left(\sum_{\{i_1,\dots,i_{i'-1}\}\subset\Gamma'_{12}\cup\{G_{j'_I}\}} \left(\prod_{l=1}^{l'-1} G_{i_l}\right) \right)$$

As a result, $w_{12} = \Delta_{j'}^{(1)} + \sum_{l'=2}^{j'-1} \Delta_{j'}^{(l')} \left(\sum_{l_{i_1}\dots,i_{i'-1}\}\subset\Gamma_{12}} \left(\prod_{l=1}^{l'-1} G_{i_l}\right) \right).$

l'=2 $(\{i_1,\ldots,i_{l'-1}\}\subset\Gamma_{12} \ (l=1) \)$ Similarly, we can extend the analysis above to w_{j_1,j_2} for $j_1 \neq j_2$. Hence, the statement is also true for $j'_{I'}$.

Under the assumption of QPS, $\Delta_{j'}^{(l)} = 0$ for l > 2. Therefore, both \mathbf{J}_j and $\hat{\mathbf{J}}_j$ are simplified, and

$$w_{j_{1},j_{2}} = \left(\sum_{l=1}^{j'} G_{l} - G_{j_{1}} - G_{j_{2}}\right) \left(v^{j'-2} - 2v^{j'-1}\right) + \left(v^{j'-1} - v^{j'}\right)$$
$$= \left(\sum_{l=1}^{j'} G_{l} - G_{j_{1}} - G_{j_{2}}\right) \Delta_{j'}^{(2)} + \Delta_{j'}^{(1)}$$

if $j_1 \neq j_2$.

If $\mathcal{A}^*(s) = \mathcal{P}^*(s) = \{1, 2, ..., j\}$, matrix $\hat{\mathbf{J}}_j$ is exactly $\mathbf{J}_{\mathcal{A}^*(s)}$ in the proof of Proposition 3 in the main paper. Lemmas 10 and 13 determine the sign of $\mathbf{J}_{\mathcal{A}^*(s)}$.

Lemma 10 det \mathbf{J}_j and det $\hat{\mathbf{J}}_j$ have sign $(-1)^{j-1}$ if the prizes satisfy QPS and $G_l > 0$ for $l \in \mathcal{P}$.⁴

Proof. First, suppose
$$\mathcal{A} = \mathcal{P}$$
, so $j = j'$.
det $\mathbf{J}_{j} = \left(\Delta_{j'}^{(1)}\right)^{j}$ det \mathbf{Z}_{j} , where $z_{j_{1},j_{2}} = \sum_{l=1}^{j} h_{l} - h_{j_{1}} - h_{j_{2}}, h_{l} = G_{l} \Delta_{j'}^{(2)} / \Delta_{j'}^{(1)} + \frac{1}{j-2}$.

Assume any $G_{i'}$ equals G_i for $i' \in \mathcal{P} \setminus \{i, j\}$, we have $\partial W_i / \partial G_j = (j-2) \Delta_{j'}^{(2)} G_i + \Delta_{j'}^{(1)} > 0$, where the inequality comes from Lemma 1 in the main paper. As a result, $h_i = G_i \Delta_{j'}^{(2)} / \Delta_{j'}^{(1)} + \frac{1}{j-2} > 0$.

Lemma 7 implies det \mathbf{Z}_j is of the sign $(-1)^{j-1}$, and so it is det \mathbf{J}_j . Second, suppose $\mathcal{A} \subsetneq \mathcal{P}$, then we have j < j'.

$$w_{j_1,j_2} = \left[\Delta_{j'}^{(2)} \left(\sum_{l \in \mathcal{A}} G_l - G_{j_1} - G_{j_2}\right) + \Delta_{j'}^{(1)}\right] + \Delta_{j'}^{(2)} \sum_{l \in \mathcal{P} \setminus \mathcal{A}} G_l$$

if $j_1 \neq j_2$ and $j_1, j_2 \in \mathcal{A}$.

⁴This claim may fail if the prizes are not QPS or GPS. Consider a four-player contest with prizes $v_1 = 7, v_2 = 2, v_3 = 1$ and $v_4 = 0$. If G_1 and G_2 are close to 0, G_3 and G_4 are close to 1, det \mathbf{J}_4 is close to 5.

 $\det \mathbf{J}_{j} = (\Delta_{j'}^{(1)})^{j} \det \mathbf{Z}_{j}, \text{ where } z_{j_{1},j_{2}} = \sum_{l \in \mathcal{A}} h_{l} - h_{j_{1}} - h_{j_{2}}, h_{l} = G_{l} \Delta_{j'}^{(2)} / \Delta_{j'}^{(1)} + \frac{y}{j-2}, y = 1 + \frac{1}{j} + \frac{1}$ $\left(\Delta_{j'}^{(2)}/\Delta_{j'}^{(1)}\right)\sum_{l\in\mathcal{P}\setminus\mathcal{A}}G_l$. det \mathbf{Z}_j has sign $(-1)^{j-1}$ according to Lemma 7.

Let us consider det $\hat{\mathbf{J}}_j$. Suppose $\mathcal{A}' = \mathcal{A} \setminus \{i'\}$ and consider equation (5) with \mathcal{A}' and \mathcal{P} . The corresponding \mathbf{J}_{j-1} of the new system is just $\hat{\mathbf{J}}_{j-1}$ in the original system. Therefore, det $\hat{\mathbf{J}}_{j-1}$ has sign $(-1)^{j-2}$ according to Lemma 7.

Lemma 11 Suppose the prizes satisfies QPS. For any $\mathcal{A} \subset \mathcal{P} \subset \mathcal{N}$ and $i \in \mathcal{A}$, LHS of (5) for i decreases if $G_i(s)$ increases in other equations of (5).

Proof. Suppose j is the weakest player in \mathcal{A} . Lemma 10 shows that det \mathbf{J}_{i} has sign $(-1)^{j-1}$ and det $\hat{\mathbf{J}}_{j-1}$ has sign $(-1)^{j-2}$, then $\hat{\mathbf{J}}_{j-1}$ is invertible and

$$\mathbf{d}'\boldsymbol{\delta} = -\mathbf{d}'\hat{\mathbf{J}}_{j-1}^{-1}\mathbf{d} = \det \mathbf{J}_j / \det \hat{\mathbf{J}}_{j-1} < 0$$

Therefore, we have $\hat{\mathbf{J}}_{i-1}\boldsymbol{\delta} = -\mathbf{d}$ and $\mathbf{d}'\boldsymbol{\delta} > \mathbf{0}$.

If we take the derivative of LHS of (5) w.r.t. $G_j(s)$, the derivatives for equations $i \neq j$ are $\hat{\mathbf{J}}_{j-1}\boldsymbol{\delta} + \mathbf{d}$ and the derivative for equation i = j is $\mathbf{d}'\boldsymbol{\delta}$. Therefore, $\hat{\mathbf{J}}_{j-1}\boldsymbol{\delta} + \mathbf{d} = \mathbf{0}$ and $\mathbf{d}'\boldsymbol{\delta} > \mathbf{0}$ imply that LHS of (5) for i decreases if $G_i(s)$ increases in other equations of (5), and the lemma is true for player j.

Since players in \mathcal{A} are symmetric in this problem, the lemma is also true for other players in \mathcal{A} .

Now consider geometric prize sequences.

Lemma 12 det \mathbf{H}_j has sign $(-1)^{j-1}$, where \mathbf{H}_j is a $j \times j$ matrix with zeros diagonal entries and $h_{j_1,j_2} = \left(\prod_{l=1}^{j'} h_l\right) / (h_{j_1}h_{j_2}) \text{ with } h_l > 0 \text{ for any } l \text{ and } j' \ge j.$

Proof. Multiply row $j_1 > 1$ by h_{j_1} .

Divided column j_2 by $\left(\prod_{l=1}^{j'} h_l\right)/h_{j_2}$. Let us describe the resulting matrix. First, the entries in the first row are $1/h_1$ except a zero at the first column. Second, the diagonal entries are zero. Third, $h_{j_1,j_2} = 1$ for $j_1 > 1$ and $j_1 \neq j_2$.

Multiply the first row by h_1 , we get det $\mathbf{D}_j = (j-1) (-1)^{j-1}$ by Lemma 1.

Lemma 13 det \mathbf{J}_i and det $\hat{\mathbf{J}}_i$ have sign $(-1)^{j-1}$ if the prizes satisfies GPS and $G_l > 0$ for $l \in \mathcal{P}$.

Proof. We can verify that $\Delta_{j'}^{(l)} = (\alpha - 1)^l v^j$, so $w_{j_1,j_2} = \prod_{l \in \mathcal{P} \setminus \{j_1,j_2\}} ((\alpha - 1) G_l + 1)$. Denote

 $h_l = (a-1)G_l + 1$, and $h_l > 0$ since $\alpha > 1$ and $0 < G_l$. Therefore, Lemma 12 implies det \mathbf{J}_j has sign of $(-1)^{j-1}$.

Similar to the case of QPS, det $\hat{\mathbf{J}}_{j-1} = \det \mathbf{J}_{j-1}$ for $\mathcal{A}' = \mathcal{A} \setminus \{i'\}$ and \mathcal{P} , so det $\hat{\mathbf{J}}_{j-1}$ has sign $(-1)^{j-2}$.

Lemma 14 Suppose the prizes satisfies GPS, then for any subset $\mathcal{A} \subset \mathcal{P} \subset \mathcal{N}$ and $i \in \mathcal{A}$, LHS of (5) for i decreases if $G_i(s)$ increases in other equations of (5).

Proof. Given the previous lemma, the proof is the same as Lemma 11.

The following two lemmas provide the omitted proofs in Lemma 5 in the main paper. Denote $h_l \equiv (\alpha - 1) G_l + 1$ and a $j \times j$ matrix $\mathbf{H}_j \equiv \mathbf{J}_j$. Switch the last two columns of \mathbf{H}_j , then drop the last column and last row, we have a $(j-1) \times (j-1)$ matrix, denote it as $\tilde{\mathbf{J}}_{j-1}$.

Lemma 15 If the prize sequence is geometric, det $\tilde{\mathbf{J}}_{i-1}$ has sign of $(-1)^j$.

Proof. Now we are going to use induction to show that det $\tilde{\mathbf{J}}_{j-1}$ has sign of $(-1)^j$.

First, when j = 3, we have det $\tilde{\mathbf{J}}_2 = \det \begin{pmatrix} 0 & h_2 \\ h_3 & h_1 \end{pmatrix} < 0$.

Suppose det $\tilde{\mathbf{J}}_{j'-1}$ has sign of $(-1)^{j'}$. Consider det $\tilde{\mathbf{J}}_{j'}$. First, divide all columns except the last one by $h_{j'+1}$, then times column j'-1 by $h_{j'-1}$ and deduct it from the last column. The last column has zeros except in row j' - 1. Expand the determinant according to the last column, and we have (-1) times a (j'-1)-dimensional determinant. Take the transpose of the matrix, we get det $\tilde{\mathbf{J}}_{j'-1}$ which has the sign of $(-1)^{j'}$. As a result, det $\tilde{\mathbf{J}}_{j'}$ has sign of $(-1)^{j'-1}$.

Take matrix $\hat{\mathbf{J}}_{j-1}$, replace its *i*th column by **d**, and denote it as $\tilde{\mathbf{J}}_{j-1,i}$. As a result, $\tilde{\mathbf{J}}_{j-1,i}$ is a $(j-1) \times (j-1)$ matrix.

Lemma 16 If the prize sequence is quadratic, we have det $\tilde{\mathbf{J}}_{j-1,i} - \det \tilde{\mathbf{J}}_{j-1,i-1}$ has sign of $(-1)^j$ for i = 2, ..., j - 1.

Proof. If the prize sequence is quadratic, the H_j has entry $h_{i,i'} = \sum_{l=1}^{J} h_l - h_i - h_{i'}$ for $i \neq i'$ and

zero diagonal elements.

We are going to show that det $\tilde{\mathbf{J}}_i - \det \tilde{\mathbf{J}}_{i-1}$ has sign of $(-1)^j$ after a series of elementary operations. If we compare $\tilde{\mathbf{J}}_i$ and $\tilde{\mathbf{J}}_{i-1}$, they are the same except the (i-1)th and *i*th columns. The (i-1)th and *i*th columns in $\tilde{\mathbf{J}}_i$ are \mathbf{h}_{i-1} and \mathbf{d} , and the (i-1)th and *i*th columns in $\tilde{\mathbf{J}}_{i-1}$ are **d** and \mathbf{h}_i . Therefore

$$\det \tilde{\mathbf{J}}_{i} - \det \tilde{\mathbf{J}}_{i-1}$$

$$= \det(\mathbf{h}_{1}, ..., \mathbf{h}_{i-1}, \mathbf{d}, \mathbf{h}_{i+1}, ..., \mathbf{h}_{j-1}) - \det(\mathbf{h}_{1}, ..., \mathbf{d}, \mathbf{h}_{i}, \mathbf{h}_{i+1}, ..., \mathbf{h}_{j-1})$$

$$= \det(\mathbf{h}_{1}, ..., \mathbf{h}_{i-2}, \mathbf{h}_{i-1}, \mathbf{d}, \mathbf{h}_{i+1}, ..., \mathbf{h}_{j-1}) + \det(\mathbf{h}_{1}, ..., \mathbf{h}_{i-2}, \mathbf{h}_{i}, \mathbf{d}, \mathbf{h}_{i+1}..., \mathbf{h}_{j-1})$$

$$= \det(\mathbf{h}_{1}, ..., \mathbf{h}_{i-2}, \mathbf{h}_{i-1} + \mathbf{h}_{i}, \mathbf{d}, \mathbf{h}_{i+1}, ..., \mathbf{h}_{j-1})$$
(12)

where the second equality comes from switching the (i-1)th and *i*th columns in det $\tilde{\mathbf{J}}_{i-1}$.

Deduct it is row from (i-1) th row, the (i-1) th row in the resulting determinant is $h_i - h_{i-1}$ except 0 in the (i-1)th column. Divide the (i-1)th row by $h_i - h_{i-1}$. Since $h_i - h_{i-1} > 0$, the resulting determinant has the same sign.

Deduct column i from all other columns except the (i-1)th column. The (i-1)th row of the resulting determinant has zeros except 1 at column i. The other rows are the same as in (12).

Expand the determinant according to the (i-1)th row, the result is $-\det \mathbf{Y}_{j-2}$, where \mathbf{Y}_{j-2} is a (j-2)-dimensional determinant. Let us describe \mathbf{Y}_{j-2} . The (i-1)th column of \mathbf{Y}_{j-2} is $h_{i-1}+h_i$ excluding the (i-1)th row; Column i' > i-1 of \mathbf{Y}_{j-2} has $h_j - h_{i'}$ except $-\sum_{l=1}^{j-1} h_l + h_{i'}$ in column $i' \in Column$ $i' \in i-1$ of \mathbf{Y}_{i-2} has $h_{i-1} + h_{i-1} + h_{i'}$ in column

i'; Column i' < i - 1 of \mathbf{Y}_{j-2} has $h_j - h_{i'+1}$ except $-\sum_{l=1}^{j-1} h_l + h_{i'+1}$ in column i'.

Add all other columns to column (i-1) of \mathbf{Y}_{j-2} , the (i-1)th column has only $(j-2)h_{j-1}$. Since $h_{j-1} > 0$, we can normalize column i-1 to ones without change the sign of the determinant.

Multiply column i - 1 with $h_j - h_{i'}$ and deduct it from column $i' \neq i - 1$. Then the i'th column has only zeros except $-\sum_{l=1}^{j-1} h_l + h_{i'+1} - (h_j - h_{i'}) = h_{i'} - \sum_{l \in \mathcal{A} \setminus \{i'\}} h_l < 0$; row i - 1 has only zeros except 1 at column i - 1, therefore we can set column i - 1 to zeros except in row i - 1 and not affect the sign of the determinant.

The resulting determinant is a diagonal matrix, therefore the determinant equals

$$-\prod_{i'\in\mathcal{A}\setminus\{i-1,j\}}\left(h_{i'}+\sum_{l\in\mathcal{A}\setminus\{i'\}}h_l\right)$$

which is a product of 1 + (j-3) negative numbers, therefore det $\tilde{\mathbf{J}}_i - \det \tilde{\mathbf{J}}_{i-1}$ has sign of $(-1)^j$.

Suppose $\mathcal{P} = \{1, 2, ..., j + 1\}$ and l = j + 1. If the prize sequence is geometric, matrix $\tilde{\mathbf{J}}_{\mathcal{P} \setminus \{l\}, j}$ in (43) in the main paper is $\tilde{\mathbf{J}}_{j-1}$. Therefore, Lemma 15 implies that det $\tilde{\mathbf{J}}_{\mathcal{P} \setminus \{l\}, j} = (-1)^{|\mathcal{P}|}$. If the prize sequence is quadratic, matrix $\tilde{\mathbf{J}}_{\mathcal{P} \setminus \{l\}, j}$ in (43) in the main paper is $\tilde{\mathbf{J}}_{j-1}$. Lemmas 16 implies that det $\tilde{\mathbf{J}}_{\mathcal{P} \setminus \{l, j\}} = (-1)^{|\mathcal{P}|}$. Recall that \mathcal{A} and \mathcal{P} contain consecutive players, the other possibilities are i) the strongest player in \mathcal{P} is not 1, or ii) $\mathcal{A} \subsetneq \mathcal{P}$. Because the proofs for these cases are similar to Lemmas 15 and 16, they are omitted.